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Abstract

Wetlands are the world’s largest natural source of methane, a powerful greenhouse
gas. The strong sensitivity of methane emissions to environmental factors such as
soil temperature and moisture has led to concerns about potential positive feedbacks
to climate change. This risk is particularly relevant at high latitudes, which have5

experienced pronounced warming and where thawing permafrost could potentially
liberate large amounts of labile carbon over the next 100 years. However, global
models disagree as to the magnitude and spatial distribution of emissions, due to
uncertainties in wetland area and emissions per unit area and a scarcity of in situ
observations. Recent intensive field campaigns across the West Siberian Lowland10

(WSL) make this an ideal region over which to assess the performance of large-scale
process-based wetland models in a high-latitude environment. Here we present the
results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models
Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We
assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions,15

simulated wetland areas, and CH4 fluxes per unit wetland area and compared these
results to an intensive in situ CH4 flux dataset, several wetland maps, and two satellite
inundation products. We found that: (a) despite the large scatter of individual estimates,
12 year mean estimates of annual total emissions over the WSL from forward models
(5.34±0.54 TgCH4 y−1), inversions (6.06±1.22 TgCH4 y−1), and in situ observations20

(3.91±1.29 TgCH4 y−1) largely agreed, (b) forward models using inundation products
alone to estimate wetland areas suffered from severe biases in CH4 emissions, (c) the
interannual timeseries of models that lacked either soil thermal physics appropriate
to the high latitudes or realistic emissions from unsaturated peatlands tended to be
dominated by a single environmental driver (inundation or air temperature), unlike those25

of inversions and more sophisticated forward models, (d) differences in biogeochemical
schemes across models had relatively smaller influence over performance; and (e)
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multi-year or multi-decade observational records are crucial for evaluating models’
responses to long-term climate change.

1 Introduction

Methane (CH4) emissions from high-latitude wetlands are an important component of
the global climate system. CH4 is an important greenhouse gas, with approximately 345

times the global warming potential of carbon dioxide (CO2) over a century time horizon
(IPCC, 2013). Globally, wetlands are the largest natural source of CH4 emissions to
the atmosphere (IPCC, 2013). Because wetland CH4 emissions are highly sensitive
to soil temperature and moisture conditions (Saarnio et al., 1997; Friborg et al., 2003;
Christensen et al., 2003; Moore et al., 2011; Glagolev et al., 2011; Sabrekov et al.,10

2014), there is concern that they will provide a positive feedback to future climate
warming (Gedney et al., 2004; Eliseev et al., 2008; Ringeval et al., 2011). This risk
is particularly important in the world’s high latitudes, because they contain nearly half
of the world’s wetlands (Lehner and Döll, 2004) and because the high latitudes have
been and are forecast to continue experiencing more rapid warming than elsewhere15

(Serreze et al., 2000; IPCC, 2013). Adding to these concerns is the potential liberation
(and possible conversion to CH4) of previously-frozen, labile soil carbon from thawing
permafrost over the next century (Christensen et al., 2004; Schuur et al., 2008; Koven
et al., 2011; Schaefer et al., 2011).

Process-based models are crucial for increasing our understanding of the response20

of wetland CH4 emissions to climate change. Large-scale biogeochemical models,
especially those embedded within earth system models, are particularly important for
estimating the magnitudes of feedbacks to climate change (e.g., Gedney et al., 2004;
Eliseev et al., 2008; Koven et al., 2011). However, as shown in the global Wetland
and Wetland Methane Intercomparison of Models Project (WETCHIMP; Melton et al.,25

2013; Wania et al., 2013), there was wide disagreement among large-scale models
as to the magnitude of global and regional wetland CH4 emissions, in terms of both
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wetland areas and CH4 emissions per unit wetland area. These discrepancies were
due in part to the large variety of schemes used for representing hydrological and
biogeochemical processes, in part to uncertainties in model parameterizations, and in
part to the sparseness of in situ observations with which to evaluate model performance
(Melton et al., 2013).5

In addition to these challenges at the global scale, the unique characteristics of high-
latitude environments pose further problems for biogeochemical models. For example,
much of the northern land surface is underlain by permafrost, which impedes drainage
(Smith et al., 2005) and stores ancient carbon (Koven et al., 2011) via temperature-
dependent constraints on carbon cycling (Schuur et al., 2008). Similarly, peat soils10

and winter snowpack can thermally insulate soils (Zhang, 2005; Lawrence and Slater,
2008, 2010; Rinke et al., 2015), dampening their sensitivities to interannual variability in
climate. Several commonly-used global biogeochemical models (e.g., Tian et al., 2010;
Hopcroft et al., 2011; Hodson et al., 2011; Kleinen et al., 2012) lack representations of
some or all of these processes.15

The prevalence of peatlands in the high-latitudes poses further challenges to
modeling (Frolking et al., 2009). Peatlands are a type of wetland containing deep
deposits of highly porous, organic-rich soil, formed over thousands of years under
waterlogged and anoxic conditions, which inhibit decomposition (Gorham, 1991;
Frolking et al., 2011). Within the porous soil, the water table is often only a few20

centimeters below the surface, leading to anoxic conditions and CH4 emissions even
when no surface water is present (Saarnio et al., 1997; Friborg et al., 2003; Glagolev
et al., 2011). This condition can lead to an underestimation of wetland area when
using satellite inundation products as inputs to wetland methane emissions models.
In addition, trees and shrubs are found with varying frequency in peatlands (e.g.,25

Shimoyama et al., 2003; Efremova et al., 2014), interfering with detection of inundation.
Furthermore, the water table depth within a peatland is typically heterogeneous,
varying on the scale of tens of centimeters as a function of microtopography
(hummocks, hollows, ridges, and pools; Eppinga et al., 2008). Models vary widely
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in their representations of wetland soil moisture conditions, ranging from schemes
that do not explicitly consider the water table position (e.g., Hodson et al., 2011), to
a single uniform water table depth for each grid cell (e.g., Zhuang et al., 2004), to
more sophisticated schemes that allow for sub-grid heterogeneity in the water table
(e.g., Bohn et al., 2007; Ringeval et al., 2010; Riley et al., 2011; Kleinen et al., 2012;5

Bohn et al., 2013; Stocker et al., 2014; Subin et al., 2014). Finally, peatland soils can
be highly acidic and nutrient-poor, and much of the available carbon substrate can be
recalcitrant (Clymo et al., 1984; Dorrepaal et al., 2009). While some models attempt
to account for the effects of soil chemical conditions such as pH, redox potential, and
nutrient limitation (e.g., Zhuang et al., 2004; Riley et al., 2011; Sabrekov et al., 2013;10

Spahni et al., 2013), not all do.
Given the potential problems of parameter uncertainty and equifinality (Tang and

Zhuang, 2008; van Huissteden et al., 2009) and computational limitations when
wetland components are embedded within global climate models, it is important to
determine which model features are necessary to simulate high-latitude peatlands15

accurately, and to constrain parameter values with observations. Until recently,
evaluation of large-scale wetland CH4 emissions models has been difficult, due to
the sparseness of in situ and atmospheric CH4 observations. However, observations
from the West Siberian Lowland (WSL) now offer the opportunity to assess model
performance, thanks to recent intensive field campaigns (Glagolev et al., 2011), aircraft20

profiles (Umezawa et al., 2012), tall tower observations (Sasakawa et al., 2010;
Winderlich et al., 2010), and high-resolution wetland inventories (Sheng et al., 2004;
Peregon et al., 2008, 2009).

Our primary goal in this study is to determine how well current global large-scale
models capture the dynamics of high-latitude wetland CH4 emissions. To this end, we25

assess the performance of 21 large-scale wetland CH4 emissions models over West
Siberia, relative to in situ and remotely-sensed observations as well as inverse models.
We examine both spatial and temporal accuracy, including seasonal and interannual
variability, and estimate the relative influences of environmental drivers on model
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behaviors. We identify the dominant sources of error and the model features that may
have caused them. Finally, we make recommendations as to which model features are
necessary for accurate simulations of high-latitude wetland CH4 emissions, and which
types of observations would help improve future efforts to constrain model behaviors.

2 Methods5

2.1 Spatial domain

The West Siberian Lowland (WSL) occupies approximately 2.5 millionkm2 in North-
Central Eurasia, spanning from 50 to 75◦ N and 60 to 95◦ E (Fig. 1a). This region is
bounded on the West by the Ural Mountains; on the East by the Yenisei River and
the Central Siberian Plateau; on the North by the Arctic Ocean; and on the South by10

the Altai Mountains and the grasslands of the Eurasian Steppe (Sheng et al., 2004).
The WSL contains most of the drainage areas of the Ob’ and Irtysh Rivers, as well
as the western tributaries of the Yenisei River, all of which drain into the Arctic Ocean.
Permafrost in various forms (continuous, discontinuous, isolated, and sporadic) covers
more than half of the area of the WSL, from the Arctic Ocean south to approximately15

60◦ N, with continuous permafrost occurring north of 67◦ N (Kremenetski et al., 2003).
The region’s major biomes (Fig. 1b) consist of the treeless Tundra north of 66◦ N,
approximately coincident with continuous permafrost; the Taiga forest belt between
55 and 66◦ N; and the grasslands of the Steppe south of 55◦ N.

Wetlands occupy 600 000 km2, or about 25 % of the land area of the WSL, primarily20

in the Taiga and Tundra zones (Sheng et al., 2004). The vast majority of these
wetlands are peatlands, with peat depths ranging from a few cm to over 5 m, comprising
a total soil carbon pool of 70 PgC (Sheng et al., 2004). Numerous field studies have
documented strong methane emissions from these peatlands, particularly those south
of the southern limit of permafrost (e.g., Sabrekov et al., 2014; Sasakawa et al., 2012;25

Glagolev et al., 2012, 2011; Friborg et al., 2003; Shimoyama et al., 2003; Panikov
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and Dedysh, 2000). Permanent water bodies, ranging in size from lakes 100 km2 in
area to bog pools only a few meters across, are comingled with wetlands throughout
the domain (Lehner and Döll, 2004; Repo et al., 2007; Eppinga et al., 2008). Notable
concentrations of lakes are found: (a) north of the Ob’ River between 61 and 64◦ N and
68 and 80◦ E, (b) west of the confluence of the Ob’ and Irtysh Rivers between 59 and5

61◦ N and 64 and 70◦ E; and (c) on the Yamal Peninsula north of 68◦ N.
Because the vegetative and soil conditions vary substantially across the domain,

we have divided it into two halves of approximately equal size along 61◦ N latitude.
The region north of this line contains permafrost, while the region south of the line is
essentially permafrost-free.10

2.2 Observations and inversions

Table 1 lists the various observations and inversions that we used in this study. We
considered four wetland map products over the WSL, all of which have been used
in high-latitude wetland carbon studies. Two of them are regional maps specific to the
WSL: Sheng et al. (2004), denoted by “Sheng2004”; and Peregon et al. (2008), denoted15

by “Peregon2008”. Both Sheng2004 and Peregon2008 used the 1 : 2 500 000-scale
map of Romanova (1977): Peregon2008 was entirely based on the Romanova map,
while Sheng2004 used the Romanova map north of 65◦ N and used the 1 : 100 000-
scale maps of Markov (1971) and Matukhin and Danilov (2000) elsewhere. The
Peregon2008 product additionally delineates the extents of various wetland sub-types.20

The third map is the Northern Circumpolar Soil Carbon Database (“NCSCD”; Tarnocai
et al., 2009), an inventory of carbon-rich soils, including peatlands, within the Arctic
permafrost region. The fourth map is the Global Lake and Wetland Database (“GLWD”;
Lehner and Döll, 2004), in which wetland extents are the union of polygons from four
different global databases.25

Two global inundation products derived from remote sensing observations were also
examined in this study: the Global Inundation Extent from Multi-Satellites (“GIEMS”;
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Prigent et al., 2007; Papa et al., 2010), derived from visible (AVHRR) and active
(SSM/I) and passive (ERS) microwave sensors over the period 1993–2004; and the
Surface Water Microwave Product Series (“SWAMPS”; Schroeder et al., 2010), derived
from active (SeaWinds-on-QuikSCAT, ERS, and ASCAT) and passive (SSM/I, SSMI/S,
AMSR-E) microwave sensors over the period 1992–2013. For both products, inundated5

areas were aggregated from native 25 km to 0.5◦×0.5◦ spatial resolution and from daily
to monthly temporal resolution.

For CH4 emissions, our primary reference for in situ observations was the estimate
of Glagolev et al. (2011), which we will refer to as “Glagolev2011”. The Glagolev2011
product consists of both a database of over 2000 individual chamber observations10

from representative landforms at each of 36 major sites over the period 2006–2010
(Fig. 1a) and a map of long-term average emissions created by applying the mean
observed emissions to the wetlands of the Peregon2008 map as a function of wetland
type. It is worth noting that the Glagolev2011 product is currently undergoing a revision
based on higher-resolution maps, which will lead to a substantial increase in annual15

emissions from the Taiga zone, due to a larger spatial extent of high-emitting wetland
types (Glagolev et al., 2013). Possible changes to emissions in the Tundra zone (in
the northern half of the WSL) are not yet known. We consider this product’s large
uncertainty in our evaluation of model predictions.

We also considered emissions estimates from five inversions. Two of them were20

regional: “Kim2011” (Kim et al., 2011) and “Winderlich2012” (Winderlich, 2012; Schuldt
et al., 2013). Kim et al. (2011) used an earlier version of Glagolev2011 (Glagolev et al.,
2010) at 1◦ ×1◦ resolution as their prior distribution for wetland emissions within the
atmospheric transport model NIES-TM (Maksyutov et al., 2008) over the period 2002–
2007. Kim et al. (2011) derived 12 climatological average monthly (spatially uniform)25

coefficients for wetland emissions to optimize atmospheric CH4 concentrations over
the WSL relative to observed CH4 concentrations obtained by aircraft sampling at two
locations in the WSL. Winderlich (2012) used the Kaplan (2002) wetland inventory for
prior wetland emissions, within the global inversion system TM3-STILT (Rödenbeck
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et al., 2009; Trusilova et al., 2010) for the year 2009. Winderlich (2012) derived 12
monthly coefficients for wetland emissions, uniquely for each point in a 1◦ ×1◦ grid, to
optimize atmospheric CH4 concentrations over the WSL relative to the concentrations
measured at the Zotino Tall Tower Observatory and three other CH4 tower observation
sites (Demyanskoe, Igrim, and Karasevoe) located between 58 and 63◦ N.5

The other inversions we considered were global: the “Reference” and “Kaplan”
versions of the Bousquet et al. (2011) inversion, denoted by “Bousquet2011R” and
“Bousquet2011K”, respectively; and the estimate of Bloom et al. (2010), denoted
by “Bloom2010”. Bousquet et al. (2011) used the LMDZ (Li, 1999) atmospheric
transport model on a 3.75◦ ×2.5◦ grid to estimate monthly CH4 emissions for the10

period 1993–2009, optimizing atmospheric concentrations of several gases including
CH4 relative to global surface observation networks, for both inversions. The Matthews
and Fung (1987) emissions inventory was the prior for wetland emissions in the
Bousquet2011R inversion, while the Kaplan (2002) emissions were the prior for the
Bousquet2011K inversion. In both cases, monthly coefficients (uniform in space over15

a region) were derived for each of 11 large regions of the globe. The region containing
the WSL was boreal Asia (in which the WSL makes up the majority of the wetlands).
The 17 year record length of the Bousquet2011 inversions made them appealing
candidates for investigating the sensitivities of emissions to interannual variability
in environmental drivers. Bloom et al. (2010) did not use an atmospheric transport20

model, but rather optimized the parameters in a simple model relating observed
atmospheric CH4 concentrations from the Scanning Imaging Absorption Spectrometer
for Atmospheric Chemistry (SCIAMACHY; Bovensmann et al., 1999) on the Envisat
satellite to observed surface temperatures from the National Center for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) weather analyses25

(Kalnay et al., 1996) and gravity anomalies from the Gravity Recovery and Climate
Experiment satellite (GRACE; Tapley et al., 2004), under the assumption that gravity
anomalies are indicative of large-scale surface and near-surface water anomalies. The
Bloom2010 inversion covered the period 2003–2007, at 3◦ ×3◦ resolution.
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2.3 Models

Among the participating models (Table 2) were those of the WETCHIMP study (Melton
et al., 2013; Wania et al., 2013) that contributed CH4 emissions estimates: CLM4Me
(Riley et al., 2011), DLEM (Tian et al., 2010, 2011a, b, 2012), IAP-RAS (Mokhov
et al., 2007; Eliseev et al., 2008), LPJ-Bern (Spahni et al., 2011; Zürcher et al.,5

2013), LPJ-WHyMe (Wania et al., 2009a, b, 2010), LPJ-WSL (Hodson et al., 2011),
ORCHIDEE (Ringeval et al., 2010), SDGVM (Hopcroft et al., 2011), and UW-VIC
(denoted by “UW-VIC (GIEMS)”; Bohn et al., 2013). In addition, we analyzed several
other models. “UW-VIC (SWAMPS)” is another instance of UW-VIC with surface water
calibrated to match the SWAMPS product. VISIT (Ito and Inatomi, 2012), contributed10

four configurations using different combinations of wetland maps and methane models:
“VISIT (GLWD)” and “VISIT (Sheng)” used the Cao (1996) methane model with the
GLWD and Sheng2004 wetland maps, respectively, and “VISIT (GLWD-WH)” and
“VISIT (Sheng-WH)” replaced the Cao model with the Walter and Heimann (2000)
model. LPX-BERN (Spahni et al., 2013; Stocker et al., 2013, 2014) is a newer version15

of LPJ-Bern that also contributed four configurations: “LPX-BERN”, which prescribed
peatland extent using Peregon2008 and inundation extent using GIEMS; “LPX-BERN
(DYPTOP)”, which dynamically predicted the extents of peatlands and inundation;
and “LPX-BERN (N)” and “LPX-BERN (DYPTOP-N)”, which additionally simulated
interactions between the carbon and nitrogen cycles. DLEM2 is a newer version of20

DLEM that includes soil thermal physics and lateral matter fluxes (Liu et al., 2013; Pan
et al., 2014). LPJ-MPI (Kleinen et al., 2012) is a version of the LPJ model that contains
a dynamic peatland model with methane transport by the model of Walter and Heimann
(2000). Finally, VIC-TEM-TOPMODEL (Zhu et al., 2014) is a hybrid of UW-VIC (Liang
et al., 1994), TEM (Zhuang et al., 2004), and TOPMODEL (Beven and Kirkby, 1979).25

The relevant hydrologic and biogeochemical features of these models are listed
in Tables 2 and 3, respectively. The models used a variety of approaches to
define (potential) methane-emitting areas (which we will refer to as “wetland” areas).
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To have some consistency across models, the original WETCHIMP study asked
participating modelers to use the GIEMS product as an input if possible. Accordingly,
some models (DLEM, DLEM2, and LPJ-WSL) used the GIEMS product exclusively
to prescribe (time-varying) wetland areas; these are denoted with the code “I” in
Table 2. Several models (CLM4Me, LPJ-MPI, LPX-BERN (DYPTOP), LPX-BERN5

(DYPTOP-N), ORCHIDEE, SDGVM, and VIC-TEM-TOPMODEL) predicted wetland
area dynamically using topographic information and the TOPMODEL (Beven and
Kirkby, 1979) distributed water table approach; these models are denoted with a “T”
in Table 2. However, both CLM4Me and ORCHIDEE tied their inundated areas to
the long-term mean of GIEMS: CLM4Me did so by calibration and ORCHIDEE did10

so by rescaling its inundated areas. Thus, we have placed them in the “I” category
in Table 2. Finally, the remaining models (IAP-RAS, LPJ-Bern, LPJ-WHyMe, LPX-
BERN, LPX-BERN (N), both UW-VIC configurations, and all four VISIT configurations)
used wetland maps, either alone or in combination with topography and inundation
products, to inform their wetland schemes; these are denoted with “M” in Table 2.15

In most cases, the maps were used to determine the maximum extent of wetlands,
within which inundated area would vary in time. In contrast, LPJ-Bern, LPX-BERN,
and LPX-BERN (N) considered both a static map-based peatland area and a time-
varying inundated mineral soil area wherever the GIEMS inundated area exceeded the
peatland area.20

Models’ hydrologic approaches varied in other ways as well. Some (IAP-RAS
and LPJ-WSL) did not include explicit water table depth formulations for estimating
emissions in unsaturated (non-inundated) wetlands; IAP-RAS assumed all wetlands
were completely saturated and LPJ-WSL only considered unsaturated wetlands
implicitly, using soil moisture as a proxy. Most of the other models used a TOPMODEL25

approach to relate the distribution of water table depths across the grid cell to
topography (generally at 1 km scale). However, LPJ-WHyMe, UW-VIC (GIEMS)
and UW-VIC (SWAMPS) determined water table depth distributions from assumed
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proportions of microtopographic landforms (e.g., hummocks and lawns) at the
(horizontal) scale of meters.

Models also varied in their soil thermal physics schemes. Most models used a 1-
dimensional heat diffusion scheme to determine the vertical profile of soil temperatures,
but VISIT used a linear interpolation between current air temperature (at the soil5

surface) and annual average air temperature (at the bottom of the soil column).
Several models (DLEM, LPJ-MPI, LPJ-WSL, and SDGVM) did not consider the
water-ice phase change and therefore did not model permafrost. While IAP-RAS
contained a permafrost scheme, it was driven by seasonal and annual summaries of
meteorological forcings and used simple analytic functions to estimate the seasonal10

evolution and vertical profile of soil temperatures. Additionally, DLEM and LPJ-WSL did
not consider the insulating effects of organic (peat) soil. In contrast, UW-VIC modeled
permafrost, peat soils, and the dynamics of surface water, including lake ice cover and
evaporation, thereby adding another factor that influences soil temperatures.

Models also varied in their biogeochemical schemes (Table 3). Most represented15

methane production as a function of soil temperature, water table depth (except for
IAP-RAS and LPJ-WSL), and the availability of carbon substrate. Most (except for
IAP-RAS and LPJ-WSL) explicitly accounted for oxidation of methane above the water
table; and most accounted for some degree of plant-aided transport. Some models
(LPJ-Bern, LPJ-MPI, LPJ-WHyMe, and LPX-BERN) represented methane production20

as either a constant or soil-moisture-dependent fraction of aerobic respiration. Some
models (DLEM, DLEM2, and VIC-TEM-TOPMODEL) imposed additional dependences
on soil pH and oxidation state. Models differed in the pathways and availability
of carbon substrate: some models (UW-VIC, VIC-TEM-TOPMODEL, VISIT (GLWD-
WH) and VISIT (Sheng-WH)) related carbon substrate availability to net primary25

productivity (NPP) as a proxy for root exudates; others (CLM4Me, IAP-RAS, LPJ-MPI,
LPJ-WSL, ORCHIDEE, SDGVM, VISIT (GLWD) and VISIT (Sheng)) related carbon
substrate to the content and residence times of various soil carbon reservoirs; and
others (DLEM, DLEM2, LPJ-Bern, LPJ-WHyMe, all four LPX-BERN configurations)

1919

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/1907/2015/bgd-12-1907-2015-print.pdf
http://www.biogeosciences-discuss.net/12/1907/2015/bgd-12-1907-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 1907–1973, 2015

WETCHIMP-WSL:
intercomparison of
wetland methane

emissions models
over West Siberia

T. J. Bohn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

drew carbon substrate from a combination of both root exudates and soil carbon
(or dissolved organic carbon, in the case of DLEM and DLEM2). CLM4Me and
two configurations of LPX-BERN simulated interactions between the carbon and
nitrogen cycles. Several models (all versions of LPJ and LPX, ORCHIDEE, and
SDGVM) included dynamic vegetation components. Some models (LPJ-Bern, LPJ-5

MPI, LPJ-WHyMe, LPX-BERN, and UW-VIC) accounted for inhibition of NPP of some
plant species under saturated soil moisture conditions. Finally, models employed
a variety of methods, alone or in combination (Table 3), to select parameter values,
including: taking the median of literature values; optimizing emissions to match in situ
observations from representative sites regionally (e.g., UW-VIC optimized parameter10

values to match the Glagolev2011 dataset in the WSL) or globally; or optimizing global
total emissions to match various estimates from inversions.

2.4 Model simulations

To be consistent with WETCHIMP’s transient simulation (“Experiment 2-trans”, Wania
et al., 2013), we focused our analysis on the period 1993–2004, although several non-15

WETCHIMP models provided data from 1993 to 2010. All models used the CRUNCEP
gridded meteorological forcings (Viovy and Ciais, 2011) as a common input. Model-
specific inputs are described in Wania et al. (2013).

Model outputs (monthly CH4 emissions (average gCH4 month−1 m−2 over the grid
cell area) and monthly wetland area (km2)) were analyzed at 0.5◦ ×0.5◦ spatial20

resolution (resampled from native resolution as necessary). Wetland area definitions
varied, complicating comparison among the models. For those that delineated
a maximal wetland extent, either from the GIEMS product or a map, wetland area
was straightforward to interpret. For several of the models that computed wetland area
dynamically (CLM4Me, LPJ-Bern, LPX-BERN (DYPTOP), LPX-BERN (DYPTOP-N),25

LPJ-MPI, ORCHIDEE, SDGVM, and VIC-TEM-TOPMODEL), any portion of any grid
cell could potentially emit methane. To provide meaningful estimates of their methane-
emitting areas, CLM4Me, ORCHIDEE, and VIC-TEM-TOPMODEL defined wetland
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area as their inundated areas; LPX-BERN (DYPTOP), LPX-BERN (DYPTOP-N), and
LPJ-MPI reported the sum of peatland area and inundated mineral soil area; LPJ-
Bern reported the sum of peatland, inundated mineral soil, and “wet mineral soil” (in
which soil moisture content was greater than 95 % of water holding capacity) areas;
and SDGVM reported the area for which the water table was above a threshold depth,5

with the threshold chosen to minimize the global RMS error between this area and
GIEMS.

Due to large seasonal variations in wetland areas, our analysis focused on June-July-
August (JJA) averages of area and CH4 emissions, since it is during these months that
the majority of the year’s methane is emitted, across all models. Thus, JJA wetland area10

is the most representative methane-emitting area. Similarly, in analyzing interannual
variability in CH4 emissions, we focused on JJA CH4 emissions, which dominate the
annual total and have stronger correlations with JJA environmental factors (such as air
temperature, precipitation, or inundation) than annual CH4 emissions have with annual
average environmental factors. We also computed growing season CH4 “intensities”15

(average CH4 emissions per unit area of wetland) as the ratio of average JJA CH4

emissions to average JJA wetland area (in m2).

2.5 Data access

All data used in this study, including observational products, inversions, and forward
model results, are available from WETCHIMP-WSL (2015).20

3 Results

3.1 Average annual total emissions

A shown in Fig. 2 and Table S1 in the Supplement, 12 year mean estimates (± standard
error on the mean) of annual total emissions over the WSL from forward models
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(5.34±0.54 TgCH4 y−1), inversions (6.06±1.22 TgCH4 y−1), and observations (3.91±
1.29 TgCH4 y−1) largely agreed, despite large scatter in individual estimates. Model
estimates ranged from 2.42 TgCH4 y−1 (LPX-BERN (DYPTOP-N)) to 11.19 TgCH4 y−1

(IAP-RAS). The Glagolev2011 estimate was substantially lower than the mean of the
models, corresponding to the 36th percentile of the distribution of model estimates.5

However, the potential upward revision of Glagolev2011 (Sect. 2.2) would move it to
a substantially higher percentile of their distribution. Inversions yielded a similarly large
range of estimates, 3.08 TgCH4 y−1 (Kim2011) to 9.80 TgCH4 y−1 (Winderlich2012).
Despite their large spread, 15 out of the 17 forward models fell within the range of
inversion estimates. Here we have excluded the “WH” configurations of VISIT and the10

configurations of LPX-BERN for which nitrogen–carbon interaction was turned off, due
to their similarities to their counterparts that were included. The wide variety in the
relative proportions of CH4 emitted from the South and North halves of the domain,
with the Southern contribution ranging from 13 to 69 % (right-hand column in Fig. 2),
indicates lack of agreement on which types of wetlands and climate conditions are15

producing the bulk of the region’s CH4.

3.2 Differences among observational datasets

The large degree of disagreement among observational datasets is worth addressing
before using them to evaluate the models. Important differences are evident among
wetland maps (Fig. 3). Sheng2004 and Peregon2008 are extremely similar, in part20

because they both used the map of Romanova (1977) north of 65◦ N. Both of these
datasets show wetlands distributed across most of the WSL, with large concentrations
south of the Ob’ River (55–61◦ N, 70–85◦ E), east of the confluence of the Ob’ and
Irtysh Rivers (57–62◦ N, 65–70◦ E) and north of the Ob’ River (61–66◦ N, 70–80◦ E). In
comparison, the GLWD map entirely lacks wetlands in the tundra region north of 67◦ N25

and shows additional wetland area in the north-east (64–67◦ N, 70–90◦ E). The NCSCD
is substantially different from the other three maps. Owing to its focus on permafrost
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soils, it completely excludes the extensive wetlands south of the southern limit of
permafrost (approximately 60◦ N). Given the numerous field studies documenting these
productive southern wetlands (Sect. 2.1), the NCSCD seems to be inappropriate for
modeling non-permafrost wetlands.

The two inundation products (GIEMS and SWAMPS) also exhibit large differences.5

While they both agree that inundation is most extensive in the central region north
of the Ob’ River (61–64◦ N), GIEMS gives areal extents that are 3–6 times those of
SWAMPS. Outside of this central peak, GIEMS inundation drops off rapidly to nearly
0 in most places (particularly in the forested region south of the Ob’ River, which
may be due to difficulties in detecting inundation under vegetative canopy and/or10

reduced sensitivity where open water fraction is less than 10 %; Prigent et al., 2007),
while SWAMPS maintains low levels of inundation throughout most of the WSL.
SWAMPS additionally shows high inundation along the Arctic Ocean coastline, which
may indicate contamination of the signal by the ocean. In both datasets, inundated
areas exhibit some similarity with the distribution of lakes and rivers (Fig. 1).15

Among the CH4 datasets (Fig. 4), a clear difference can be seen between
the spatial distributions of Glagolev2011 and Kim2011, both of which assign the
majority of emissions to the region south of the Ob’ River, between 55 and 60◦ N;
and Winderlich2012 and Bousquet2011K, both of which assign the majority of
emissions to the central region north of the Ob’ River, between 60 and 65◦ N. We20

discuss possible reasons for this discrepancy in Sect. 4.3. The global inversions
(Bousquet2011R and K, and Bloom2010) have coarser spatial resolution than the
regional inversions of Kim2011 and Winderlich2012. Bousquet2011R and K have
similar distributions between 60 and 65◦ N, but Bousquet2011R has relatively stronger
emissions between 57 and 60◦ N and weaker emissions between 65 and 67◦ N; in this25

respect, Bousquet2011R is intermediate between Glagolev2011 and Winderlich2012.
Finally, Bloom2010 exhibits relatively little spatial variability in emissions, likely due to
its use of GRACE observations as a proxy for wetlands.
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3.3 Primary drivers of model spatial uncertainty

The wide disagreement among models is plainly evident in Fig. 5, which plots average
JJA CH4 emissions vs. average JJA wetland areas for the WSL as a whole (top left), the
South (bottom left), and the North (bottom right). A series of lines (“spokes”) passing
through the origin, with slopes of integer multiples of 1 gCH4 m−2, allows comparison5

of spatial average intensities (CH4 emissions per unit wetland area). All points along
a given line have the same intensity but different wetland areas. We have included the
Glagolev2011/Peregon2008 CH4/area estimate (denoted by a black star) and the mean
of the inversions (denoted by a grey star) for reference. We set the area coordinate for
the inversions to Peregon2008, because (a) the wetland area was not available for all10

inversions, and (b) Peregon2008 is a relatively accurate estimate of wetland area. JJA
CH4 emissions, JJA wetland areas, and JJA intensities, for all models, observations,
and inversions, are listed in Table S1. Over the entire WSL (Fig. 5, top left), the scatter
in model estimates of CH4 emissions results from scatter in both area (ranging from
200 000 to 1 200 000 km2) and intensity (ranging from 1 to 8 gCH4 m−2), with no clear15

relationship between the two.
However, a strong area-driven bias is evident in the South (Fig. 5, bottom

left). Although the model CH4 distribution (mean of 0.58 TgCH4 month−1) is fairly
close to both Glagolev2011 (0.67 TgCH4 month−1) and the mean of inversions
(0.60 TgCH4 month−1), the distribution of model estimates is substantially skewed,20

with most models’ estimates falling well below both Glagolev2011 and the mean of
the inversions. Glagolev2011’s estimate corresponds to the 81st percentile of the
model CH4 distribution; the expected upward revision of Glagolev2011 (Sect. 2.2;
exact JJA amount not yet known) would only raise that percentile. The mean of
the inversions corresponds to the 76th percentile. Similarly, the models substantially25

underestimate wetland area, with Peregon2008 occupying the 83rd percentile of the
model distribution. On the other hand, the model intensity distribution is much less
biased, with Glagolev2011 corresponding to the 47th percentile. Even a doubling
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of Glagolev2011’s intensity would place it at only the 69th percentile of the model
distribution, a smaller bias than for area. Thus, the area bias is the major driver of CH4
bias in the South. In comparison, the North (Fig. 5, bottom right) is relatively unbiased.

Model inputs and formulations played a key role in determining wetland area biases.
Statistics of model performance relative to Glagolev2011/Peregon2008, categorized5

by the wetland codes in Table 2, are listed in Table 4. The models that used satellite
inundation products alone (denoted with circles in Fig. 5 and the code “I” in Table 2)
estimated the lowest wetland areas in the south, with a bias of −270 000 km2 and SD of
31 000 km2. Additionally, two models (LPJ-Bern and LPJ-WHyMe) from the “M” group
(denoted by squares in Fig. 5 and the code “M” in Table 2) also yielded low areas, due10

to their use of the NCSCD map, which omitted non-permafrost wetlands. The “M+”
group, consisting of all “M” models except those two, exhibited the smallest bias and
second-smallest SD (−31 000 and 34 000 km2, respectively). Models that determined
wetland area dynamically using topographic data, but without the additional input of
wetland maps (denoted by triangles in Fig. 5 and the code “T” in Table 2) yielded15

nearly as small a bias as the “M+” group (−42 000 km2), but had the largest scatter
(SD of 173 000 km2) of the groups. The fact that two of the “I” models (CLM4Me and
ORCHIDEE) supplied wetland areas that excluded non-inundated methane-emitting
wetlands had little effect on the results, since their total CH4 emissions (which included
non-inundated emissions) also suffered from a large negative bias (−0.45 TgCH4 y−1,20

or −67 %).
Examining the spatial distributions of annual CH4 (Fig. 6) and JJA wetland areas

(Fig. 7) shows why the use of inundation data alone results in poor model performance.
Among the models from the “I” group (CLM4Me, DLEM, DLEM2, LPJ-WSL, and
ORCHIDEE), the spatial distributions of both CH4 emissions and wetland area tend to25

be strongly correlated with GIEMS (see Table 5 for correlations), which exhibits very low
inundated areas south of the Ob’ River, despite the large expanses of wetlands there
(Sect. 3.2). Similarly, the low emissions of LPJ-WHyMe and LPJ-Bern in the South
can be explained by their use of the NCSCD wetland map, which only considered
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permafrost peatlands north of 60◦ N. For LPJ-WHyMe, these permafrost peatlands
were the only type of wetland modeled, so LPJ-WHyMe’s emissions were almost
nonexistent in the South. LPJ-Bern also used the NCSCD, but additionally simulated
methane dynamics in wet or inundated mineral soils. While this allowed LPJ-Bern to
make emissions estimates in the South, the much lower porosities of mineral soils5

resulted in larger reductions in soil moisture content than would occur in peat soils for
a given evaporative loss. These drier soils led to net methane oxidation in much of the
South.

Aside from area-driven biases, a large degree of intensity-driven scatter is evident
in both the South and North. Indeed, the underestimation of areas in the South,10

accompanied by resulting reductions in CH4 emissions, partially compensated for some
of the intensity-driven scatter there. However, some of the more extreme intensities
were arguably the result of area biases, in that some of the global wetland models
(CLM4Me, IAP-RAS, LPJ-Bern, and LPJ-WHyMe) scaled their intensities to match
their global total emissions with those of global inversions, which could result in local15

biases if their wetland maps suffered from either global or local bias (which was true
of these models). Interestingly, several models yielded estimates similar to those of the
two regionally-optimized UW-VIC simulations, implying that the regional optimization
did not confer a distinct advantage on UW-VIC.

3.4 Model temporal uncertainty and major environmental drivers20

3.4.1 Average seasonal cycles

Models and inversions demonstrated general agreement on the shape of the seasonal
cycle of emissions (Fig. 8, top left) and intensities (Fig. 8, bottom right), despite wide
disagreement on the shape and timing of the seasonal cycle of wetland area (Fig. 8,
bottom left). The regional inversions (Kim2011 and Winderlich2012) agreed on a July25

peak for CH4, although Winderlich2012 suggested a noticeably larger contribution from
cold season months than the others (which is plausible, given reports of non-zero
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winter emissions; Rinne et al., 2007; Kim et al., 2007; Panikov and Dedysh, 2000). In
contrast, both Bousquet inversions peaked in August. Unlike the other three inversions,
the Bousquet2011R inversion had negative emissions (net oxidation) in either May or
June of almost every year of its record. These negative emissions were widespread,
throughout not only the WSL but the entire boreal Asia region, and cast doubt on the5

accuracy of their seasonal cycle. Turning to the inundation products (Fig. 8, bottom
left), GIEMS and SWAMPS displayed quite different shapes in their seasonal cycles of
inundation: GIEMS exhibited a sharp peak in June and SWAMPS displayed a broad,
flat maximum from June through September. In fact, SWAMPS had a similar shape to
GIEMS south of about 64◦ N; the broad peak for the WSL as a whole was the result of10

late-season peaks further north.
Most models’ CH4 emissions peaked in July, in agreement with the regional

inversions. A few models peaked in June: CLM4Me, DLEM2, LPJ-MPI, VISIT (GLWD)
and VISIT (Sheng). Correspondingly early peaks in intensity can explain the early
peaks in the DLEM2 and the VISIT simulations, indicating either early availability of15

carbon substrate in the soil or rapid soil warming (the latter is likely for VISIT, given its
linearly-interpolated soil temperatures). In contrast, LPJ-MPI’s early peak in emissions
was the result of an early (May) peak in wetland area, which, in turn, was the result
of early snow melt. Two models (LPJ-BERN and UW-VIC (GIEMS)) peaked in August.
LPJ-Bern’s late peak resulted from a late peak in wet mineral soil intensity, despite an20

exceptionally late (October) peak in wetland area. The late peak of UW-VIC (GIEMS)
corresponded to a late peak in intensity, implying either late availability of carbon
substrate (due to inhibition of NPP under inundation) or delayed warming of the soil
(due to excessive insulation by peat or surface water).

Aside from the above cases, the relative agreement among models on a July peak25

in CH4 emissions comes despite wide variation in seasonal cycles of wetland area. For
example, DLEM’s wetland area held steady at its maximum extent from April through
November; and VIC-TEM-TOPMODEL’s wetland area peaked in August, possibly due
to low evapotranspiration or runoff rates. Some of the discrepancies in wetland area
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seasonality arose from several models’ using static maps to define some or all wetland
areas (Sects. 2.3 and 2.4). These differences matter little to the seasonal cycle of CH4
emissions, in part because of the similarity between the seasonal cycles of inundated
area and water table depths within the static wetlands, and in part because of the nearly
universal strong correlation at seasonal time scales between simulated intensities and5

near-surface air temperature (so that cold-season wetland areas have little influence
over emissions).

3.4.2 Interannual variability

At multi-year time scales (shown for the period 1993–2010 in Fig. 9), models’ and
inversions’ total annual CH4 emissions displayed a wide range of interannual variability,10

even after accounting for the effects of differences in intensity. Values of the coefficient
of variation (CV) for models over the period 1993–2004 ranged from 0.069 (LPX-
BERN (N)) to 0.338 (UW-VIC (GIEMS)) with a mean of 0.169 (Table 6). While
Bousquet2011K’s CV of 0.160 fell near the mean model CV, Bousquet2011R’s CV
of 0.446 was 25 % larger than the largest model CV, and over twice the second-15

largest model CV. Bousquet2011R’s high variability was due in part to a peak in CH4
emissions in 2002 followed by a large drop in emissions between 2002 and 2004,
actually becoming negative (net CH4 oxidation) in 2004 before continuing at a much
lower mean value from 2005 to 2009. This peak and decline coincide with a similar
peak and decline in inundation (Fig. 10) and precipitation (Fig. 11). Several models20

(notably LPJ-MPI, LPJ-WHyMe, LPJ-WSL, DLEM, and VIC-TEM-TOPMODEL), as well
as Bousquet2011K, mirrored this drop to varying degrees, but none dropped as much
in proportion to their means or became negative. In contrast, Bloom2010, spanning
only the period 2003–2007, exhibited extremely little interannual variability, perhaps
due to its use of GRACE as a proxy for wetland area.25

To investigate the influence of various climate drivers on CH4 emissions, we
computed the individual correlations between the JJA CH4 emissions and the following
JJA drivers: CRU air temperature (Tair), CRU precipitation (P ), GIEMS fractional
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inundated area (Finund), and SWAMPS Finund, for forward models and the two
Bousquet2011 inversions, over the period 1993–2004 (Table S2). Here we included
four additional model configurations that we did not show in previous sections: VISIT
(GIEMS-WH), VISIT (SHENG-WH), LPX-BERN, and LPX-BERN-DYPTOP. The two
drivers yielding the highest correlations with JJA CH4 emissions were JJA CRU5

Tair and JJA GIEMS Finund. These two drivers also exhibited nearly zero correlation
with each other over the WSL and the South and North halves (Table 7). Because
variations in water table position are driven by the same hydrologic factors (snowmelt,
rainfall, evapotranspiration, and drainage) that drive variations in Finund, correlation
with Finund should serve as a general measure of the influence of both surface and10

subsurface moisture conditions on methane emissions, even for models that were not
explicitly driven by Finund. Therefore, we chose to examine model behavior in terms of
correlations with JJA CRU Tair and JJA GIEMS Finund. As an aside, this choice was not
an endorsement of GIEMS over SWAMPS (which yielded qualitatively similar results
to GIEMS); it simply resulted in better separation among models.15

The relative strengths of the correlations between models’ CH4 emissions and
drivers varied widely, as shown in the scatter plots in Fig. 12. Over the entire WSL (top
left) as well as the South and North halves (bottom left and right), the low correlation
between Tair and Finund led to consistent trade-offs in the correlations between simulated
emissions and Tair (x axis) or Finund (y axis). Some models (all four LPX-BERN20

simulations, all four VISIT simulations, and, in either the South or the North, IAP-
RAS, ORCHIDEE, and SDGVM) had correlations with Tair that were greater than 0.7;
since this means that Tair would explain the majority of CH4 variance in a linear model,
we have denoted them as “Tair-dominated”. Other models (DLEM, LPJ-WSL, and, in
either the South or the North, DLEM2 and LPJ-MPI) were “Finund-dominated”. For the25

other models and inversions, no driver explained the majority of the variance. A few
models had small enough contributions from one or the other driver that the resulting
correlations were negative, due to the small negative correlation between Tair and Finund.
Neither of the two Bousquet2011 inversions exhibited strong correlations with either
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Finund or Tair. Given the high interannual variability of the Bousquet2011 inversions,
we hesitate to treat them as an accurate depiction of wetland behavior in the WSL.
However, their lack of strong correlations with either driver might imply that models
also should not exhibit strong correlations with one driver.

Indeed, the overarching pattern in the model correlations was that models that5

lacked physical and biochemical formulations appropriate to the high latitudes exhibited
stronger correlations with inundation or air temperature than either the inversions
or more sophisticated models. One characteristic that most of the Finund-dominated
models (except for DLEM2) have in common is that they lack soil thermal formulations
that account for soil freeze/thaw processes; conversely, most of the non- Finund-10

dominated models do have such formulations. In addition, inundated fractions of DLEM,
DLEM2, and LPJ-WSL were explicitly driven by GIEMS. Unlike the other three models,
LPJ-MPI does account for the thermal effects of peat soils, which might explain LPJ-
MPI’s low (slightly negative) correlation with air temperature.

Some of the Tair-dominated models also lack sophisticated soil thermal physics.15

VISIT’s strong correlation with Tair can be explained by the fact that its soil temperature
scheme is a simple linear interpolation between current air temperature at the surface
and annual average air temperature at the bottom of the soil column; as a result,
VISIT’s soil temperature has a 1.0 correlation with air temperature. Comparing the
“WH” configurations of VISIT to the default configurations, the model of Walter and20

Heimann (2000) had a lower correlation with air temperature than the Cao (1996)
model. SDGVM also lacks soil freeze-thaw dynamics. IAP-RAS assumes all wetlands
are completely saturated and holds their areas constant in time; as a result, its CH4
emissions have no dependence on moisture or inundation, and strong dependence
on air temperature. LPX-BERN’s high correlation with air temperature is the result of25

a relative insensitivity of CH4 emissions to water table depth, but at present there are
too few sites with multi-year observations in the region to determine whether this low
sensitivity is reasonable. Nitrogen–carbon interaction (LPX-BERN (N) and LPX-BERN
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(DYPTOP-N)) appeared to have only a minor effect on LPX-BERN’s temporal variability
in the North but led to a slight reduction in correlation with Tair in the South.

Finally, UW-VIC (GIEMS) had small negative correlations with both Tair and Finund,
likely the result of its surface water formulation. UW-VIC’s surface water dynamics
had been initially calibrated using the SWAMPS product; the much larger inundated5

extents of GIEMS in the North resulted in substantially deeper surface water, with
corresponding insulating effects, greater evaporative cooling, and longer residence
times, thus lowering correlations with both observed inundation and air temperature.
The large difference in behavior between UW-VIC (GIEMS) and UW-VIC (SWAMPS)
implies that the differences arising from optimizing surface water dynamics to different10

products far outweighed the differences between UW-VIC and other models in their
selection of biogeochemical parameters.

4 Discussion

4.1 Long-term means and spatial distributions

The most striking finding, in terms of long-term means and spatial distributions, was15

the substantial bias in CH4 emissions that resulted from using satellite inundation
products or inaccurate wetland maps to delineate wetlands. Inundation is an
important component of wetland models, but it clearly is a poor proxy for wetland
extent at high latitudes, given both the large expanses of strongly-emitting partially-
inundated peatlands that exist there (Sect. 2.1) that were missed by GIEMS and20

underrepresented by SWAMPS; and the high concentrations of lakes there (e.g.,
Lehner and Döll, 2004), which do not necessarily emit methane at the same rates
or via the same carbon cycling processes as wetlands (e.g., Walter et al., 2006; Pace
et al., 2004). The practical difficulties in detecting inundation under forest canopies
with visible or high-frequency microwave sensors (e.g., Sippel and Hamilton, 1994)25

compound these problems. In the case of the WSL, equating wetlands with inundation
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not only caused underestimation of total CH4 emissions, but also led to attribution of
the majority of the region’s emissions to the permafrost zone in the North. This issue
is not unique to the WSL, as the collocation of permafrost, lakes, and inundation is
present throughout the high latitudes (Tarnocai et al., 2009; Lehner and Döll, 2004;
Brown et al., 1998). Indeed, in their analysis of the Hudson Bay Lowland (HBL), Melton5

et al. (2013) found that three of the four lowest emissions estimates were from “I”
models (CLM4Me, DLEM, and LPJ-WSL), although whether this was due to a bias in
area was not examined. Given present concerns over the potential liberation of labile
carbon from thawing permafrost over the next century (Koven et al., 2011), it is crucial
to avoid under- or over-estimating emissions from permafrost wetlands.10

It is therefore important for modelers – both forward and inverse – to use
accurate wetland maps such as Peregon et al. (2008), Sheng et al. (2004), or
Lehner and Döll (2004) in their model development, whether as a static input
parameter or as a reference for evaluating prognostically-computed wetland areas;
and to account for the existence of non-inundated portions within these wetlands15

in which methane emissions have a dependence on water table depth. Maps such
as Tarnocai et al. (2009) may be inappropriate unless restricting simulations to
permafrost wetlands. Ideally, modelers would be able to draw on a global version of
the high-resolution map of Peregon et al. (2008) that not only delineates wetlands, but
also identifies the major sub-types (e.g., sphagnum-dominated or sedge-dominated,20

as in Lupascu et al., 2012) to which different methane emissions parameters
could potentially be applied. When using inundation products to constrain simulated
inundated extents, modelers must be sure either to mask out permanent lakes and
large rivers, using a dataset such as GLWD (Lehner and Döll, 2004) or MOD44W
(Carroll et al., 2009); or better, to implement carbon cycling processes that are25

appropriate to these forms of surface water.
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4.2 Temporal variability, environmental drivers, and model features

Another notable finding was that models that lacked physical and biochemical
formulations appropriate to the high latitudes exhibited more extreme correlations with
inundation or air temperature than either inversions or more sophisticated models. In
other words, high-latitude biogeophysical processes – specifically, soil freeze/thaw, the5

insulating effects of snow and peat, and relationships between emissions and water
table depth in peatlands – make a substantial difference to the sensitivities of emissions
to environmental drivers, at least over the 12 year period of this study. Even if we do not
fully trust the Bousquet2011 inversions, it seems reasonable to assume that the models
that simulate high-latitude-specific processes are more likely to be correct in this regard10

than the other models. These sensitivities have a bearing on models‘ responses to
potential future climate change (e.g., Riley et al., 2011; Koven et al., 2011).

Thus, it appears that the following model features are desirable for reliable
simulations of boreal wetlands:

– Realistic soil thermal physics. Most of the models that were highly correlated with15

one driver (LPJ-WSL, DLEM, LPJ-MPI, VISIT, and SDGVM) lacked this feature.

– Accurate representations of peat soils. Again, many of the models with high
correlations (LPJ-WSL, DLEM, VISIT, and SDGVM) lacked this feature.

– Realistic CH4 emissions from unsaturated peatlands. LPJ-WSL, an Finund-
dominated model, effectively set non-inundated CH4 emissions to zero because20

it did not simulate wetlands outside of the time-varying GIEMS inundated area.
At the other extreme, IAP-RAS, a Tair-dominated model, treated all wetlands in
their static map as if they were inundated, thereby eliminating the contribution
of soil moisture variability. The relative insensitivity of LPX-BERN’s emissions to
water table position similarly reduced the contribution of soil moisture variability,25

although there are too few observations to say whether this is unreasonable.

1933

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/1907/2015/bgd-12-1907-2015-print.pdf
http://www.biogeosciences-discuss.net/12/1907/2015/bgd-12-1907-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 1907–1973, 2015

WETCHIMP-WSL:
intercomparison of
wetland methane

emissions models
over West Siberia

T. J. Bohn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

– No additional features that are poorly constrained. The dynamic surface water
storage in UW-VIC was optimized for the SWAMPS inundation product, and
therefore performed poorly in the UW-VIC (GIEMS) configuration.

Other model features made little difference in this study, but warrant further
investigation. For example, whether models contained dynamic vegetation (phenology5

and/or community composition) or dynamic peatland (peat accumulation and loss)
components did not affect performance. However, our 12 year study period was likely
too short to see the effects of these features. Changes in vegetation community
composition may become more important in end-of-century projections (e.g., Alo and
Wang, 2008; Kaplan and New, 2006). In particular, recent studies (Koven et al., 2011;10

Ringeval et al., 2011; Riley et al., 2011) have found a “wetland feedback”, in which
vegetation growth in response to future climate change can lower water tables and
reduce inundated extents via increased evapotranspiration. This drying effect reduces
end-of-century CH4 emissions from an approximate doubling of current rates without
the feedback to only a 20–30 % increase with the feedback. Similarly, hydrologic and15

chemical changes in peat soils, in response to disturbances such as permafrost thaw
or drainage for mining or agricultural purposes, may be important in end-of-century
projections (e.g., Strack et al., 2004). However, to properly assess the accuracy of
dynamic vegetation or peatland schemes and their effects on CH4 emissions, a longer
historical study period, along with longer observational records (including observations20

of species compositions and soil carbon densities), would be necessary.
Other features may warrant further study. Replacing the Cao (1996) model with the

model of Walter and Heimann (2000) modestly lowered VISIT’s otherwise extreme
correlation with Tair. It is not clear if this is an inherent difference between the two
formulations or just an artifact of their parameter values in VISIT, but it might imply that25

the Walter and Heimann model is more appropriate for applications at high latitudes.
Similarly, nitrogen–carbon interaction had a small effect on LPX-BERN in the South.
Again, the size of the effect might vary with model implementation.
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Some of the scatter in model sensitivities to drivers may come from differences
in the values of parameters related to methane production, methane oxidation, and
plant-aided transport, which recent studies (Riley et al., 2011; Berritella and van
Huissteden, 2011) have found to be particularly influential over wetland CH4 emissions.
Investigation of these parameters over the WSL in a model intercomparison can be5

difficult due to the many larger differences among model formulations. As shown in
Sects. 3.3 and 3.4.2, the methods of biogeochemical parameter selection had far less
influence over the model results than the presence or absence of major features such
as sophisticated soil thermal physics. Such a comparison would require examination
of a subset of the models that have sufficiently similar snow, soil, and water table10

formulations in order to isolate the effects of microbial and vegetative parameters.
Other features that were not investigated here could have potentially large impacts

on the response of high-latitude wetlands to future climate change. One such feature
is acclimatization, in which soil microbial communities gradually adapt to the long-
term mean soil temperature. This feature has been explored in the ORCHIDEE model15

(Koven et al., 2011; Ringeval et al., 2010), where it greatly reduced the response of
wetland CH4 emissions to long-term temperature changes. Unfortunately, the version
of ORCHIDEE used in this study and in the original WETCHIMP study (Melton et al.,
2013; Wania et al., 2013) did not use acclimatization. Acclimatization likely would lower
ORCHIDEE’s correlation with Tair over time scales long enough for changes in the long-20

term mean to be as large as interannual anomalies. Another feature explored by Koven
et al. (2011) is the liberation of ancient labile carbon stored in permafrost. As with
dynamic vegetation, a robust evaluation of these effects would require a much longer
study period.

4.3 Future needs for observations and inversions25

The wide disagreement among estimates from observations and inversions hampers
our ability to assess model performance. Given the large influence that wetland maps
can have on emissions estimates (not only in the WSL, but over larger areas, as shown
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by Petrescu et al., 2010), care must be taken to select appropriate maps. Ideally, global
satellite or map products such as the GLWD (which omitted the northernmost wetlands
in the WSL) should be validated against more intensively ground-truthed regional maps
such as Sheng2004 and Peregon2008 where such maps exist. Similarly, resolving the
discrepancies between the GIEMS and SWAMPS remote sensing inundation products5

would require verification against independent observations.
The large discrepancy between the spatial distributions of emissions from

Glagolev2011 and Kim2011 (concentrated in the South) and Winderlich2012 and
Bousquet2011K (concentrated in the North) may be due to several reasons. First, the
inversions’ posterior estimates reflect their prior distributions: Kim2011 used an earlier10

version of Glagolev2011 (Glagolev et al., 2010) as its prior, while Winderlich2012
and Bousquet2011K both used the Kaplan (2002) distribution as their prior. Second,
different types and locations of observations were used: Glagolev2011 was based on
in situ chamber measurements of CH4 fluxes, 80 % of which were obtained south of
the Ob’ River; while Winderlich2012 was based on atmospheric CH4 concentrations15

observed at towers near or north of the Ob’ River. Third, observations were not taken
from the same years. Finally, the Winderlich2012 wetland CH4 emissions may have
been influenced by assumed emission rates from fossil fuel extraction and biomass
burning, which were not adjusted during the inversion. Efforts like the revision of
Glagolev2011 will certainly help in resolving some discrepancies, but all estimates20

would benefit from incorporating observations over long time periods and wider areas
to reduce uncertainties in their long-term means.

The global inversions were also subject to uncertainties. For example, while the
Bousquet2011 inversions imply that wetland CH4 emissions in the WSL are not strongly
correlated with either inundation or air temperature, the Bousquet2011 inversions’25

temporal behaviors must be evaluated with caution. The reference inversion’s
coefficient of variability (CV), which resulted in net negative annual emissions over
the WSL in 2004, was substantially higher than the highest model CV. Bousquet
et al. (2006) noted that their inversions were more sensitive to the interannual
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variability of wetland emissions than to their mean; accordingly, it is possible that the
Bousquet2011 inversions underestimated the long-term mean, thereby raising the CV.
Another possibility is that the monthly coefficients that optimized total emissions over
all of boreal Asia were not optimal over the WSL alone, since the environmental drivers
interacting with wetlands elsewhere may not have been in phase with those in the WSL.5

A further possibility, given credence by the reference inversion’s consistent net negative
emissions over all of boreal Asia in May and June, is that errors in other components
of the inversion (e.g., atmospheric OH concentrations, methane oxidation rates,
background methane concentrations advected from elsewhere) influenced wetland
emissions. Finally, other methane sources that were not accounted for in the inversion10

might have been attributed to wetlands; for example: geological CH4 seeps (Etiope
et al., 2008), leaks from gas pipelines (Ulmishek, 2003), or lakes (Walter et al., 2006).

At the other extreme, the Bloom2010 inversion exhibited almost no spatial or
temporal variability. This might be an artifact of using GRACE data as a proxy for
wetland inundation and water table levels. The spatio–temporal accuracy of this15

inversion must also be questioned, given that it did not use an atmospheric transport
model or account for methane oxidation in the atmosphere. When combined with the
inversion’s coarse resolution, these characteristics prevented Bloom2010 from being
useful in our study for anything other than comparing long-term mean emissions.

Another general limitation of inversions and observations, distinct from estimates of20

long-term mean emissions, is the lack of sufficiently long periods of record to assess
model sensitivities to environmental drivers and climate change. The Bousquet2011
inversions and the SWAMPS inundation product are long enough to begin to address
this issue at the global scale, but the Bousquet2011 inversions are not optimized for
the WSL. Regional inversions such as Kim2011 and Winderlich2012, which might offer25

more spatially accurate estimates for the WSL than the Bousquet2011 inversions,
only offer a single year of posterior emissions. Long records of in situ observations
of CH4 emissions, and the factors that most directly influence these emissions (e.g.,
soil temperature and water table depth) only exist in a handful of locations (e.g., the
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Plotnikovo/Bakchar Bog in the WSL; Panikov and Dedysh, 2000; Friborg et al., 2003;
Glagolev et al., 2011). Indeed, the paucity of long in situ records limited our ability
to evaluate LPX-BERN’s relatively low sensitivity to water table depth. Year-round
observations would also be helpful, as winter emissions are sparsely sampled (Rinne
et al., 2007; Kim et al., 2007; Panikov and Dedysh, 2000) and inversions disagree5

as to the magnitude of winter emissions (Fig. 8). The recent implementation of tower
networks in the WSL (Sasakawa et al., 2010; Winderlich et al., 2010) show some
promise in this regard, as their observations are both multi-year and year-round. More
comprehensive observations of emissions from non-wetland methane sources such
as seeps, pipe leaks, and lakes, most of which have so far not been accounted for in10

inversions (although pipe leaks are now being considered; Berchet et al., 2014), would
be beneficial in increasing the accuracy of inversions.

5 Conclusion

We compared CH4 emissions from 21 large-scale wetland models, including the
models from the WETCHIMP project, to 5 inversions and several observational15

datasets of CH4 emissions, inundated area, and total wetland area over the West
Siberian Lowland (WSL), over the period 1993–2004. Despite the large scatter
of individual estimates, mean estimates of annual total emissions over the WSL
from forward models (5.34±0.54 TgCH4 y−1), inversions (6.06±1.22 TgCH4 y−1), and
observations (3.91±1.29 TgCH4 y−1) largely agreed. However, it was clear that reliance20

on satellite inundation products alone to delineate wetlands caused substantial
biases in long-term mean CH4 emissions over the region. Models and inversions
largely agreed on the timing of the seasonal cycle of emissions over the WSL, but
some outliers in the timing of peaks in simulated inundated area indicated potential
inaccuracies in simulating the timing of snow melt and drainage rates. Models and25

inversions also displayed a wide range of interannual variability: the CV of the
Bousquet2011 reference inversion was more than twice the CVs of all but one model,
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while the CV of the Bloom2010 inversion was essentially zero. Summer CH4 emissions
from the Bousquet2011 inversions exhibited only weak correlations with summer
air temperature or inundation. Models that accounted for soil thermal physics and
realistic methane-soil moisture relationships similarly tended to have low to moderate
correlations with both inundation and air temperature, due in part to the competing5

influences of temperature and moisture, and in part to the insulating effects of snow
and peat soils. In contrast, models lacking these formulations tended to be either
inundation- or temperature-dominated (either inundation or temperature accounted for
more than 50 % of the variance).

Based on our findings, we have the following recommendations for simulating CH410

emissions from high-latitude wetlands:

– Forward and inverse models should use the best available wetland maps, either
as inputs or as targets for optimization of dynamic wetland schemes. Satellite-
derived inundation products are a poor proxy for wetland extent, due to (a)
misclassifying large areas of high-latitude peatlands that can emit methane when15

the water table is below the surface, (b) often including permanent water bodies,
whose carbon cycling dynamics can be substantially different from those of
wetlands; and (c) difficulties in detecting inundation under forest canopies. To
improve the accuracy of global wetland map products may require combining
information from satellite products and canonical maps.20

– Models must account for emissions from non-inundated wetlands, with realistic
relationships between emissions and water table depth.

– Models should implement realistic soil thermal physics and snow schemes, and
account for the presence of peat soils at high latitudes.

– Multi-year and multi-decade observational and inversion products are crucial for25

assessing whether model simulations capture the correct sensitivities of wetland
CH4 emissions to environmental drivers.
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The Supplement related to this article is available online at
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Table 1. Observations and inversions used in this study.

Name Reference Description Temporal
Domain

Temporal
Resolution

Spatial Domain Spatial Resolution

Wetland Maps

Sheng2004 Sheng et al. (2004) Wetland map of WSL based on digitization of
regional maps of Markov (1971), Matukhin and
Danilov (2000), and Romanova et al. (1977).
Supplemented with peat cores.

2nd half of
20th Century

Static map West Siberia 1 : 2 500 000 north of
65◦ N, 1 : 1 000 000
south of 65◦ N

Peregon2008 Peregon et al. (2008) Wetland map of WSL based on digitization of
regional map of Romanova et al. (1977). Wetland
types identified by remote sensing and field
validation.

2nd half of
20th Century

Static map West Siberia 1 : 2 500 000

Northern Circumpolar
Soil Carbon Database
(NCSCD)

Tarnocai et al. (2009) Map of wetlands across the northern circumpolar
permafrost region. Over the WSL, based on maps
of Fridland (1988) and Naumov (1993).

2nd half of
20th Century

Static map Northern
circumpolar
permafrost
region

1 : 2 500 000

Global Lake and Wetland
Database (GLWD)

Lehner and Döll (2004) Global lake and wetland map. Wetlands were the
union of four global datasets.

2nd half of
20th Century

Static map Global 1 : 1 000 000

Inundation Extent

Global Inundation Extent
from Multi-Satellites
(GIEMS)

Papa et al. (2010) Remote sensing inundation product based on
visible (AVHRR) and active (SSM/I) and passive
(ERS) microwave sensors.

1993–2004 Daily,
aggregated
to monthly

Global 25 km equal area grid,
aggregated
to 0.5◦ ×0.5◦

Surface Water
Microwave Product
Series (SWAMPS)

Schroeder et al. (2010) Remote sensing inundation product based on ac-
tive (SeaWinds-on-QuikSCAT, ERS, and ASCAT)
and passive (SSM/I, SSMI/S) microwave sensors.

1992–2013 Daily,
aggregated
to monthly

Global 25 km equal area grid,
aggregated
to 0.5◦ ×0.5◦

CH4 Inventory

Glagolev2011 Glagolev et al. (2011) In situ flux sampling along transect spanning West
Siberia, 2006–2010; statistical model of fluxes as
function of wetland type applied to map of Peregon
et al. (2008).

2006–2010 Monthly
climatology

West Siberia 0.5◦ ×0.5◦

CH4 Inversions

Bloom2010 Bloom et al. (2010) Global optimization of relationship between
SCIAMACHY atmospheric CH4 concentrations
(Bovensmann et al., 1999), NCEP/NCAR surface
temperatures (Kalnay et al., 1996), and GRACE
gravity anomalies (Tapley et al., 2004).

2003–2007 Annual Global 3◦ ×3◦

Bousquet2011R Bousquet et al. (2011),
Bousquet et al. (2006)

Global inversion using LMDZ with Matthews and
Fung (1987) inventory as the wetland prior.

1993–2009 Monthly Global 1◦ ×1◦ resolution for
prior, multiplied by sin-
gle coefficient for all of
boreal Asia

Bousquet2011K Bousquet et al. (2011),
Bousquet et al. (2006)

Global inversion using LMDZ with emissions from
Kaplan (2002) as the wetland prior.

1993–2009 Monthly Global 1◦ ×1◦ resolution for
prior, multiplied by sin-
gle coefficient for all of
boreal Asia

Kim2011 Kim et al. (2011) Global inversion, with Glagolev et al. (2010) as
prior in WSL, Fung et al. (1991) elsewhere.

2002–2007 Monthly
climatology

Regional 1◦ ×1◦ resolution for
prior, multiplied by sin-
gle coefficient for all of
WSL

Winderlich2012 Winderlich (2012),
Schuldt et al. (2013)

Regional inversion over West Siberia, with Kaplan
(2002) as the wetland prior.

2009 Monthly
climatology

Regional 1◦ ×1◦ resolution for
both prior and coeffi-
cients over WSL
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Table 2. Participating models and their relevant hydrologic features.

Model Reference Configuration Period Contributing Areas – Observational Constraints Unsaturated
Emissions?

Water Table Organic
Soil

Soil
Freeze/
Thaw

Inundation Topography Maps Code

CLM4ME Riley et al. (2011) CLM4ME 1993–2004 GIEMS – – Ia Yes Uniform Yes Yes
DLEM Tian et al. (2010,

2011a, b, 2012)
DLEM 1993–2004 GIEMS – – I Yes Uniform No No

DLEM2 Tian et al. (2010,
2011a,b, 2012)

DLEM2 1993–2004 GIEMS – – I Yes Uniform Yes Yes

IAP-RAS Mokhov et al.
(2007),
Eliseev et al.
(2008)

IAP-RAS 1993–2004 – – CDIAC
NDP017b

M,M+ No n/a Yes Yes

LPJ-Bern Spahni et al.
(2011),
Zürcher et al.
(2013)

LPJ-Bern 1993–2004 GIEMS – NCSCD M Yes Uniform Yes Yes

LPJ-MPI Kleinen et al.
(2012)

LPJ-MPI 1993–2010 – Hydro1Kc – T Yes TOPMODEL Yes No

LPJ-WHyMe Wania et al.
(2009a, b; 2010)

LPJ-WHyMe 1993–2004 – – NCSCD M Yes Microtopography Yes Yes

LPJ-WSL Hodson et al.
(2011)

LPJ-WSL 1993–2004 GIEMS – – I No n/a No No

LPX-BERN Spahni et al.
(2013),
Stocker et al.
(2013),

LPX-BERN 1993–2010 GIEMS for
inundated
non-peatland
wetlands

– Peregon2008
for peatland
fraction

M,M+ Yes Uniform Yes Yes

Stocker et al.
(2014)

LPX-BERN
(DYPTOP)

1993–2010 – ETOPO1d,
Hydro1Kc

– T Yes TOPMODEL Yes Yes

LPX-BERN
(N)

1993–2010 GIEMS for
inundated
non-peatland
wetlands

– Peregon2008
for peatland
fraction

M,M+ Yes Uniform Yes Yes

LPX-BERN
(DYPTOP-N)

1993–2010 – ETOPO1d,
Hydro1Kc

– T Yes TOPMODEL Yes Yes

ORCHIDEE Ringeval et al.
(2010)

ORCHIDEE 1993–2004 GIEMS Hydro1Kc – Ia Yes TOPMODEL Yes Yes

SDGVM Hopcroft et al.
(2011)

SDGVM 1993–2004 – ETOPO
2v2e

– T Yes Uniform No No

UW-VIC Bohn et al.
(2013)

UW-VIC
(GIEMS)

1993–2004 GIEMS SRTMf,
ASTERg

Sheng2004 M,M+ Yes Microtopography Yes Yes

UW-VIC
(SWAMPS)

1993–2010 SWAMPS SRTMf,
ASTERg

Sheng2004 M,M+ Yes Microtopography Yes Yes

VIC-TEM-
TOPMODEL

Zhu et al. (2014) VIC-TEM-
TOPMODEL

1993–2004 GIEMS Hydro1Kc T Yes TOPMODEL No Yes

VISIT Ito and Inatomi
(2012)

VISIT
(GLWD)

1993–2010 – – GLWD M,M+ Yes Uniform No No

VISIT
(SHENG)

1993–2010 – – Sheng2004 M,M+ Yes Uniform No No

VISIT
(GLWD-WH)

1993–2010 – – GLWD M,M+ Yes Uniform No No

VISIT
(SHENG-WH)

1993–2010 – – Sheng2004 M,M+ Yes Uniform No No

a CLM4Me and ORCHIDEE are listed as “I” due to tuning/rescaling of inundated areas to match GIEMS, thus destroying contribution of topography.
b http://cdiac.esd.ornl.gov/ndps/ndp017.html, c Hydro1K (2013), d Amante and Eakins (2009), e ETOPO (2006), f Farr et al. (2007), g NASA (2001).
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Table 3. Participating models and their relevant biogeochemical features.

Model Ranaerobic/Raerobic C Substrate Sourcea pH Redox
State

Dynamic
Vegetation

Nitrogen–Carbon
Cycle Interaction

Saturated NPP
Inhibition

Parameter Selection

CLM4Me Variable Cpool Yes Yes Yes Yes No Optimized to various sites
DLEM Variable NPP and Cpool Yes Yes No No No Optimized to various sites
DLEM2 Variable NPP and Cpool Yes Yes No No No Optimized to various sites
IAP-RAS n/a Cpool No No No No No Literature; Scaled to global

total
LPJ-Bern Constant NPP and Cpool No No Yes No Yes Optimized to various sites;

Scaled to global total
LPJ-MPI Constant Cpool No No Yes No Yes Literature
LPJ-WHyMe Constant NPP and Cpool No No Yes No Yes Literature; Scaled to global

total
LPJ-WSL Constant Cpool No No Yes No No Literature
LPX-BERN Constant NPP and Cpool No No Yes No Yes Optimized to various sites;

Scaled to global total
LPX-BERN (DYPTOP) Constant NPP and Cpool No No Yes No Yes Optimized to various sites;

Scaled to global total
LPX-BERN (N) Constant NPP and Cpool No No Yes Yes Yes Optimized to various sites;

Scaled to global total
LPX-BERN (DYPTOP-N) Constant NPP and Cpool No No Yes Yes Yes Optimized to various sites;

Scaled to global total
ORCHIDEE Variable Cpool No No Yes No No Literature and Optimized to

various sites
SDGVM Variable Cpool No No Yes No No Literature
UW-VIC(GIEMS) Variable NPP No No No No Yes Optimized to sites in

Glagolev2011
UW-VIC(SWAMPS) Variable NPP No No No No Yes Optimized to sites in

Glagolev2011
VIC-TEM-TOPMODEL Variable NPP Yes Yes No No No Optimized to various sites
VISIT(GLWD) Variable Cpool No No No Yes (only affects

upland CH4 oxidation)
No Literature

VISIT(GLWD-WH) Variable NPP No No No Yes (only affects
upland CH4 oxidation)

No Literature

VISIT(Sheng) Variable Cpool No No No Yes (only affects
upland CH4 oxidation)

No Literature

VISIT(Sheng-WH) Variable NPP No No No Yes (only affects
upland CH4 oxidation)

No Literature

∗ Sources: “Cpool”= soil carbon pool; “NPP”= root exudates, in proportion to net primary productivity.
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Table 4. Estimates of June-July-August CH4 emissions from subsets of the participating
models, over the entire WSL and its Southern (< 61◦ N) and Northern halves, for the period
1993–2004. Biases were computed with respect to the Glagolev2011/Peregon2008 estimates.

Subset Average Jun-Jul-Aug CH4 (TgCH4 month−1) Average Jun-Jul-Aug Contributing Area (103 km2)

WSL South North WSL South North

Mean Bias SD Mean Bias SD Mean Bias SD Mean Bias SD Mean Bias SD Mean Bias SD

I 1.10 0.14 0.37 0.22 −0.45 0.16 0.89 0.59 0.24 388 −291 136 66 −270 31 321 −21 112
T 1.42 0.46 0.82 0.81 0.14 0.46 0.61 0.31 0.39 682 4 325 294 −42 173 389 46 153
M 1.32 0.36 1.01 0.69 0.02 0.97 0.64 0.34 0.40 605 −74 113 250 −87 109 355 12 105
M+ 1.30 0.34 1.17 0.85 0.18 1.10 0.45 0.16 0.15 633 −46 93 306 −30 34 327 −15 95
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Table 5. Spatial correlations between simulated average annual CH4 emissions and GIEMS
inundated area.

Model Correlation Model Correlation Model Correlation

CLM4Me 0.69 LPJ-WHyMe 0.45 UW-VIC (GIEMS) 0.44
DLEM 0.70 LPJ-WSL 0.97 UW-VIC (SWAMPS) 0.11
DLEM2 0.21 LPX-BERN (N) 0.41 VIC-TEM-TOPMODEL 0.41
IAP-RAS −0.03 LPX-BERN (DYPTOP-N) 0.28 VISIT (GLWD) 0.62
LPJ-Bern 0.56 ORCHIDEE 0.61 VISIT (Sheng) 0.65
LPJ-MPI 0.01 SDGVM 0.09
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Table 6. Temporal Coefficients of Variation (CV) of annual CH4 emissions, 1993–2004.

Model CV Model CV Model CV

CLM4Me 0.115 LPJ-WSL 0.208 VIC-TEM-TOPMODEL 0.149
DLEM 0.242 LPX-BERN (N) 0.069 VISIT (GLWD) 0.171
DLEM2 0.140 LPX-BERN (DYPTOP-N) 0.076 VISIT (Sheng) 0.163
IAP-RAS 0.091 ORCHIDEE 0.113 Bousquet2011K 0.160
LPJ-Bern 0.087 SDGVM 0.118 Bousquet2011R 0.446
LPJ-MPI 0.195 UW-VIC (GIEMS) 0.338
LPJ-WHyMe 0.127 UW-VIC (SWAMPS) 0.197
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Table 7. Temporal correlations among environmental drivers, 1993–2004.

WSL CRU T JJA CRU P JJA SWAMPS JJA GIEMS JJA

CRU T JJA 1.00
CRU P JJA −0.10 1.00
SWAMPS JJA 0.14 0.66 1.00
GIEMS JJA −0.11 0.44 0.68 1.00

S CRU T JJA CRU P JJA SWAMPS JJA GIEMS JJA

CRU T JJA 1.00
CRU P JJA −0.28 1.00
SWAMPS JJA −0.12 0.44 1.00
GIEMS JJA −0.10 0.22 0.87 1.00

N CRU T JJA CRU P JJA SWAMPS JJA GIEMS JJA

CRU T JJA 1.00
CRU P JJA −0.06 1.00
SWAMPS JJA 0.32 0.60 1.00
GIEMS JJA −0.05 0.34 0.61 1.00
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Figure 1. Map of the West Siberian Lowland (WSL). (a) Limits of domain (brown) and peatland
distribution (cyan), taken from Sheng et al. (2004); lakes of area> 1 km2 (blue) taken from
Lehner and Döll (2004); permafrost zone boundaries after Kremenetski et al. (2003); CH4
sampling sites from Glagolev et al. (2011) denoted with red circles. (b) Dominant land cover at
25 km derived from MODIS-MOD12Q1 500 m land cover classification (Friedl et al., 2010).
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Figure 2. Mean annual emissions from the WSL, from inversions (green), observation-based
estimates (red), and forward models (blue). The hatched portions of the bars indicate the
emissions from the southern half of the domain (latitude< 61◦ N). Error bars on the model
results indicate the interannual SD of the southern and northern emissions. Error bars on the
inversions and observational estimates indicate the uncertainty given in those studies. Numeric
fractions of the total emissions contributed by the southern and northern halves of the domain
are displayed in the right-hand column.
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Figure 3. Observational datasets related to wetland areas. For SWAMPS and GIEMS, areas
shown are the June-July-August (JJA) average inundated area over the period 1993–2004.
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Figure 4. Observation- and inversion-based estimates of annual CH4 emissions (gCH4 y−1 m−2

of grid cell area). For inversions, averages are over the following periods: 2002–
2007 (Kim2011), 2003–2007 (Bloom2010), 2009 (Winderlich2012), and 1993–2004
(Bousquet2011K and R).
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Figure 5. Model estimates of JJA CH4 emissions (TgCH4 month−1) and JJA wetland area
(103 km2), for the entire WSL (top left) and the Southern (bottom left) and Northern (bottom
right) halves, for the period 1993–2004. Lines passing through the origin, with slopes of
integer multiples of 1 gCH4 month−1 m−2, allow comparison of spatial average intensities (CH4
emissions per unit wetland area). Circles denote models that used satellite inundation products
alone (corresponding to code “I” in Table 2) to delineate wetlands. Triangles denote models
that used topographic information, with or without inundation products (corresponding to code
“T” in Table 2). Squares denote models that used wetland maps with or without topography or
inundation products (corresponding to code “M” in Table 2).
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Figure 6. Maps of simulated average annual CH4 emissions (gCH4 m−2 y−1 of grid cell area).
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Figure 7. Maps of average JJA wetland area (fraction of grid cell area) from participating
models.
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Figure 8. Average whole-domain seasonal cycles (1993–2004) of normalized monthly CH4
emissions (top), normalized monthly wetland areas (lower left), and monthly intensities
(gCH4 m−2 of wetland area; lower right), with satellite inundation products and inversions for
reference. CH4 emissions and wetland areas have been normalized relative to their peak
values.
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Figure 9. Timeseries of simulated annual total CH4 emissions (TgCH4) from participating
models, Bousquet et al. (2011) the Reference and Kaplan inversions from Bousquet et
al. (2011), and Bloom (2010) inversion.
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Figure 10. Timeseries of simulated JJA wetland areas (103 km2), with JJA inundated areas
from GIEMS and SWAMPS products for reference.
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Figure 11. Timeseries of CRU JJA air temperature (◦C) and precipitation (mm).
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Figure 12. Influence of inundation on model CH4 emissions (expressed as correlation between
JJA GIEMS inundated area and JJA CH4) vs. influence of air temperature on model CH4
emissions (expressed as correlation between JJA CRU air temperature and JJA CH4), for
the entire WSL (top) and the Southern and Northern halves of the domain (bottom). “Finund-
dominated” and “Tair-dominated” denote correlation thresholds above which inundated area or
air temperature, respectively, explain more than 50 % of the variance of CH4 emissions. Symbol
shapes and colors are the same as in Fig. 5.
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